COURSE: Math 1C-27 Calculus
DAY: TuTh
TIME: \quad 4:00-6:15 pm
EMAIL: isonmillia@fhda.edu

QUARTER: \quad Spring 2019
INSTRUCTOR: Millia Ison
OFFICE PHONE: 864-5659
OFFICE NUMBER: S76e

OFFICE HOUR : MW: 12:30-1:20 pm; TuTh: 6:20-7:10 pm.
COURSE PREREQUISITES: Math 1B, or equivalent course with a grade " C " or better. TEXT: Calculus: Early Transcendentals, by James Stewart, 8th edition.
ENROLL WEB ASSIGN : Class Key: deanza 39689907

EQUIPMENT: A computer or a computer with graph capability is required.
GRADING:
WebAssign -----75 points
13 quizzes -------75 points
3 midterms --- 300 points
Final exam ---- 150 points
Total ----------- 600 points

A: $93 \%-96 \%, 558-600 \mathrm{pts}$	$\mathrm{C}+: 76 \%-79 \%, 456-479 \mathrm{pts}$
A-: $90 \%-92 \%, 540-557 \mathrm{pts}$	C: $70 \%-75 \%, 420-455 \mathrm{pts}$
B+: $87 \%-89 \%, 522-539 \mathrm{pts}$	D: $60 \%-69 \%, 360-419 \mathrm{pts}$
B: $83 \%-86 \%, 498-521 \mathrm{pts}$	F: $0 \%-59 \%, 0-359 \mathrm{pts}$
B-: $80 \%-82 \%, 480-497 \mathrm{pts}$	

Homework Points: You need to do your homework on a regular bases. However all homework is due on March 28. Total points on WebAssign is 1141(subject to change). Out of which, 1010 points are required (subject to change). If you have 1010, you earn 75 points (full credit) toward your grade. If you have total of 1080 , then $1080 / 10101.07$, that is $107 \%, 107 \% \quad 75 \quad 80$, you have 80 points for homework, which is 5 points extra credit. The total amount of the extra credit will be decided after the final exam.

Quiz Points: 6 points each quiz.ssep 2 quizzes each week (1 quiz in an exam week). You must take quiz in class. NO make-up quiz. Absent or taking a quiz outside of class is $\mathbf{0}$ for the quiz. There are 17 quizzes this quarter. 13 quizzes are required. The extra quizzes either will be dropped (lowest scores) or will be extra credit. The total amount of the extra credit will be determined after the final exam.

EXAM POINTS: 100 points each. Dates are on the calendar the next page. Scheduled dates are subject to change. NO make-up midterm exams. Absences are counted as 0's. If the percent of your final exam score is higher than some of your exams, it will replace the lowest exam score. It can only replace 1 out of 3 exams. For example: your lowest exam score is 73%, your achieve 120/150 on the final exam, which is 80%. Then the 73 on the exam is replaced by 80 . If all your 3 exams are higher than your final exam percentage, then your exam scores will not change. People doing better on the final will help their overall score.

FINAL EXAM: Thursday, June 27, 4:00-6:00 p
Fail to take the final exam, you will receive " F " for your grade.
Exams and quizzes are to test your understanding of the classroom discussions and homework assignments. Cheating of any form on quizzes, midterm exams or final exam will be grounds for disciplinary action.

IMPORTANT DATES: Sunday, April 21 --- Last day to drop without grade on your record. Friday, May 31 --- Last day to drop with a "W".
ATTENDANCE: Regular attendance is required. More than 3 absences without contact me will result in a "W" or "F" for the class. Last day to drop class is May 31. After that day, You will receive a grade for the course.

Text: Stewart, $8^{\text {th }}$ edition
MATH 1C-27 Spring 2019 Calendar
TuTh Room E32

Chapter	SEC	PROBLEMS		Monday	Tuesday	Wednesday	Thursday	Friday
Parametric Equations AndPolar	$\begin{aligned} & 10.1 \\ & 10.2 \\ & 10.3 \end{aligned}$	Curves Defined by Parametric Equations Calculus with Parametric Curves Polar Coordinates	April	8	10.1^{9}	10	$10.2,10.3$	12
Coordinates	10.4	Areas and Lengths in Polar Coordinates	April	15	10.4^{16}	17	$\begin{array}{r} 18 \\ 11.1,11.2 \end{array}$	19
Infinite Sequencs And Series	$\begin{aligned} & \hline 11.1 \\ & 11.2 \\ & 11.3 \\ & 11.4 \end{aligned}$	Sequences Series The Integral Test and Estimates of Sums The Comparison Tests Alternating Series Absolute Convergence \& the Ratio and Root Tests Strategy for Testing Series Power Series Representations of Functions as Power Series Taylor and MacLaurin Series Applications of Taylor Polynomials	April	22	$\begin{array}{r} 23 \\ 11.2,11.3 \end{array}$	24	Review Exam 1	26
	$\begin{aligned} & 11.5 \\ & 11.6 \\ & 11.7 \end{aligned}$		April May	29	$\begin{array}{r} 30 \\ 11.4,11.5 \end{array}$	1	$\begin{array}{r} 2 \\ 11.6,11.7 \end{array}$	3
	$\begin{gathered} 11.8 \\ \\ 11.9 \\ 11.10 \end{gathered}$		May	6	$\begin{array}{r} 7 \\ 11.8,11.9 \end{array}$	8	9 $11.9,11.10$	10
	11.11		May	13	11.11^{14}	15	Review Exam 2	17
Vector And The	$\begin{aligned} & 12.2 \\ & 12.3 \\ & 12.4 \end{aligned}$	Vectors The Dot Product The Cross Product	May	20	$\begin{array}{r} 21 \\ 12.1,12.2 \end{array}$	22	12.3^{23}	24
Of Space	$\begin{aligned} & 12.5 \\ & 12.6 \end{aligned}$	Equations of Lines and Planes Cylinders and Quadric Surfaces	May	Memorial Day Holiday	12.4^{28}	29	$12.5{ }^{30}$	31 last day to drop w/W
Vector Functions	$\begin{aligned} & 13.1 \\ & \\ & 13.2 \\ & 13.3 \\ & \\ & 13.4 \end{aligned}$	Vector Functions and Space Curves Derivatives and Integrals of Vector Functions Arc Length and Curvature Motion in Space: Velocity and Acceleration	June	3	$\begin{array}{r} 4 \\ 12.6 \end{array}$	5	6 $13.1,13.2$	7
			June	10	11 Review Exam 3	12	13.3^{13}	14
			June	17	13.4^{18}	19	$\text { Review }{ }^{20}$	21
			June	24	25	26	$\begin{gathered} \text { Final } \\ 48 \\ 4: 00-6: 00 p \\ \hline \end{gathered}$	28

Student Learning Outcome(s):

*Graphically, analytically, numerically and verbally analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.
*Apply infinite sequences and series in approximating functions.
*Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.

