Instructor: Dr. Zack Judson
Office Hours: MWF 9:30-10:20
judsonzack@deanza.edu
(Note: I will not answer Math questions over email)
Prerequisite: \quad Math 212 or an equivalent course
Text:

1) INTERMEDIATE ALGEBRA, $7^{\text {th }}$ Edition BY BLITZER
2) Student Access Code to MyMathLab (Required)
3) A Scientific Calculator (i.e. TI-30XIIS)

Midterm Exams: Four exams will be given with no make-ups. If an exam is missed under extreme circumstances and for a very valid reason, something will be arranged.

Homework: Homework will be assigned on MyMathLab. No late work will be accepted. MyMathLab

Course ID: judson34806
Groupwork: Students will often work in groups. Often this work will be at the board. This work will largely be graded based on effort. There will be no make-up group work allowed. If you are going to miss class for any reason you must inform me by email. Be sure that your email contains the date of the absence and your reason for missing class. Emails should be sent prior to the date missed. Due to some circumstances this may not be possible and the email must then be sent at the earliest opportunity.

Final Exam: On the last Tuesday of class there will be an exam covering all of the applications covered during this course. This score will be combined with the two-hour comprehensive exam that will be given during the final exam time.

Accommodations: Those of you who need additional accommodations due to disability, campus related activities, or some other reason, please meet with me during the first two weeks of class to discuss your options.

Grade: The way in which the homework, groupwork, quizzes, midterms and finals will contribute to your grade will be co-constructed by the class on the first day of the quarter.

Grading Scale: \quad A : 93-100 $\quad \mathrm{B}+: 87-89 \quad \mathrm{C}+: 77-79 \quad$ D : 60-69 \quad F : 0-59
A-: 90-92 B : 83-86 C : 70-76
B- : 80-82

Tentative Schedule
Math 114 Spring Quarter 2019

	Monday	Tuesday	Wednesday	Thursday	Friday
April	Introductions 8	Review of Exponents 9	Basics of Factoring 10	$\begin{aligned} & \text { Mixed Factoring } \\ & 11 \end{aligned}$	Mixed Review 12
April	Rational Functions 15	Simplifying Rationals 16	Common Denominators 17	Adding Rationals 18	Rational Equations 19
April	Rational Models 22	Rational Models 23	Review 24	$\begin{aligned} & \text { Midterm 1 } \\ & 25 \\ & \hline \end{aligned}$	Absolute Value Equations 26
April/May	Absolute Value Inequalities 29	Radicals and Roots 30	Rational Exponents 1	Simplifying Radicals 2	Arithmetic with Radicals 3
May	Radical Equations 6	Radical Models 7	Circles and the Distance formula 8	Review 9	Midterm 2 10
May	Graphing Exponentials 13	Exponential Functions 14	Exponential Models 15	Exponential Growth and 16 Decay	Inverse Functions 17
May	Logarithmic Functions 20	Translating Logarithms 21	Expanding Logarithms 22	Condensing Logarithms 23	Logarithmic Review 24
May	Memorial Day 27	Logarithmic Equations 28	Exponential Equations 29	Exponential Models Revisited 30	Growth and Decay Revisited 31
June	Review 3	Midterm 3 5	Introduction to Sequences 6	Introduction to Series 7	Arithmetic Sequences 8
June	Arithmetic Series 10	Geometric Sequences 11	Geometric Series 12	Review 13	Midterm 4 14
June	Review of Applications I 17	Review of Applications I 19	Application Final 20	Review for Final $\begin{array}{\|l\|} \hline 21 \\ \hline \end{array}$	Exit Survey 22
June	$\begin{array}{\|l\|} \hline \text { Final } \\ 7: 00-9: 00 \mathrm{am} \\ 24 \\ \hline \end{array}$	26	27	28	29

Important Dates: April 20: Last day to add a class
April 21: Last day to drop with no grade on record.
May 3: Last day to request Pass/No Pass grade.
May 31: Last day to drop with a "W".

Student Learning Outcome(s):

*Evaluate real-world situations and distinguish between and apply exponential, logarithmic, rational, and discrete function models appropriately.
*Analyze, interpret, and communicate results of exponential, logarithmic, rational, and discrete models in a logical manner from four points of view - visual, formula, numerical, and written.

